博客
关于我
AVL和红黑树的一些概念
阅读量:362 次
发布时间:2019-03-04

本文共 684 字,大约阅读时间需要 2 分钟。

在这里插入图片描述

平衡二叉树

二三树
AVL树
B树
红黑树

如何保证一棵树的平衡?

二叉搜索树的查询效率只与高度有关,与结点的个数无关

(1)AVL

  1. 平衡因子 Balance Factor,绝对值小于1
    是它的左子树的高度减去它的右子树的高度(有时相反)
    balance factor = {-1,0,1}
  2. 通过选择的操作进行平衡
  3. 所有叶子结点的平衡因子为 0
    在这里插入图片描述

旋转操作:

  1. 左旋

    a. 右右子树——》左旋
    在这里插入图片描述

  2. 右旋

    a. 左左子树——》右旋
    b.

  3. 左右旋

    a. 左右子树——》左右旋

在这里插入图片描述

在这里插入图片描述

  1. 右左旋
    a. 右左子树——》右左旋

在这里插入图片描述

在这里插入图片描述

为什么要引入AVL?

因为二叉搜索树会出现极端的情况,如果二叉搜索树的结点为1、2、3、4、5,则都为右结点,相当于一个链表了,则优势全无。

平衡因子怎么定的?

查询的时间复杂度等于树的深度

在这里插入图片描述

不足:结点需要存储额外信息,且调整次数频繁

(2)近似平衡二叉树——红黑树 Red-black Tree

红黑树是一种近似平衡二叉搜索树,它能够确保任何一个结点的左右子树的高度差小于两倍。具体来说,红黑树是满足如下条件的二叉搜索树:

  1. 每个结点要么是红色,要么是黑色
  2. 根节点是黑色
  3. 每个叶结点(NIL结点,空结点)是黑色的
  4. 不能有相邻的两个红色结点
  5. 从任一结点到其每个叶子的所有路径都包含相同数目的黑色结点

在这里插入图片描述

从根到叶子的最长的可能路径不多于最短的可能路径的两倍长

AVL和红黑树的对比

在这里插入图片描述

AVL查询更好

红黑树提供了更快的插入和删除的操作,AVL旋转更多
AVL存储的额外信息更多,需要更多的内存,红黑树需要存储的节点个数更少
如果读操作多 AVL;插入操作和查询操作比较多 红黑树

转载地址:http://fder.baihongyu.com/

你可能感兴趣的文章
NAT技术
查看>>
NAT模式/路由模式/全路由模式 (转)
查看>>
NAT模式下虚拟机centOs和主机ping不通解决方法
查看>>
NAT的两种模式SNAT和DNAT,到底有啥区别?
查看>>
NAT的全然分析及其UDP穿透的全然解决方式
查看>>
NAT类型与NAT模型详解
查看>>
NAT网络地址转换配置实战
查看>>
NAT网络地址转换配置详解
查看>>
navbar navbar-inverse 导航条设置颜色
查看>>
Navicat for MySQL 命令列 执行SQL语句 历史日志
查看>>
Navicat for MySQL 查看BLOB字段内容
查看>>
Navicat for MySQL笔记1
查看>>
Navicat for MySQL(Ubuntu)过期解决方法
查看>>
Navicat Premium 12 卸载和注册表的删除
查看>>
Navicat 导入sql文件
查看>>
navicat 添加外键1215错误
查看>>
navicat 系列软件一点击菜单栏就闪退
查看>>
navicat 自动关闭_干掉Navicat!MySQL官方客户端到底行不行?
查看>>
Navicat 设置时间默认值(当前最新时间)
查看>>
navicat 连接远程mysql
查看>>